MINERALOGIA AVANZADA

PROGRAMA ANALÍTICO

Clase	Objetivos	Temas	TP N°
1	Contexto histórico	Evolución del conocimiento en mineralogía.	
1	Repaso de conceptos básicos de cristalografía	Repaso de los principios cristalográficos: elementos de simetría, grupos puntuales, redes de traslación y grupos espaciales. Ley de la constancia de los ángulos (Steno), ley de racionalidad de los índices (Haüy) e índices de Miller.	
1	Repaso de mineralogía química	Categoría de los elementos para la mineralogía: Elementos principales, elementos minoritarios, elementos trazas. Distintos tipos de enlaces. Distribución y abundancia relativa de los minerales. Principios químicos que gobiernan el comportamiento de cada uno en los minerales.	
2	Repaso de sistemática, paragénesis y procesos formadores de minerales	Clasificación mineralógica de Dana: clases, familias, grupo, especies y variedades. Distintos tipos de paragénesis y clases mineralógicas que las componen. Síntesis de los Procesos formadores de minerales .	
2	Evolución Mineral	Distintas teorías. Causas y consecuencias. Variación de los procesos formadores de minerales en el espacio y tiempo. Distribución actual de los minerales.	
3	Complementos de cristalografía	Nucleación y el crecimiento de los cristales (repaso y complemento). Formas cristalográficas simples y complejas (repaso y complemento). Regla de Eulero. Morfología externa de los cristales, ley de Bravais y demás variables que gobiernan el desarrollo de las formas cristalográficas. Condiciones de formación de cada una y variables que los condicionan. Goniometría.	, ,
4	Técnicas para el estudio de minerales y sus condiciones de formación	Introducción: Clasificación y principio de las distintas técnicas para el estudio de los minerales. Técnicas que emplean propiedades físicas (óptica), técnicas mediante excitación externa (espectrometría, difractometría y microscopía electrónica) y técnicas independientes (Microtermometría). Procesos de interacción entre materia y radiación, y entre materia y partículas.	
4	Propiedades físico- químicas particulares	Introducción y repaso: lista de propiedades y clasificación de las mismas. Las propiedades físicas para la concentración de especies: Preparación de las muestras, molienda, cuarteo, tamizado, etc. Métodos de concentración de minerales. Técnicas para la realización de cortes orientados (facetamiento).	TP (2)
5	Propiedades Magnéticas y Técnicas de estudio	Introducción de propiedades magnéticas en minerales. Caracterización de la mineralogía magnética de las rocas (tipo y proporción de minerales ferromagnéticos con respecto a los minerales paramagnéticos y diamagnéticos) a través de ciclos de histéresis, curvas de magnetismo remanente isotérmico y curvas termomagnéticas. Ejemplos.	
5	Técnicas térmicas	Análisis térmico diferencial (ATD) y Análisis térmico Gravimétrico (ATG y DTG). Principios, cálculos, información que suministran y empleo en mineralogía (ventajas y desventajas). Ejemplos.	
6	Migrocopio éstico de	Repaso de conceptos básicos. Dispersión: Importancia. Identificación de cristales biáxicos de acuerdo a su dispersión. Relación entre el ángulo 2V, el índice de refracción y la longitud de onda. Cristales ortorrómbicos; dispersión de los ejes ópticos, dispersión normal y dispersión del plano axial. Cristales monoclínicos; dispersión inclinada, dispersión horizontal y dispersión cruzada. Observación al microscopio.	TP (3)
7	Microscopía óptica de refracción (Complementos)	Indices de Refracción: Refractómetros: refractómetro del prisma, refractómetro de Jelley y refractómetro Abbe. Principios, ventajas y desventajas. Líquidos de inmersión. Curvas de dispersión del índice de refracción en sólidos y líquidos. Gráfico de Hartmann. Método de variación simple y método de variación doble. Ley de Brewster. Aplicaciones.	
8		Complementos para el microscopio de polarización : Cuña de cuarzo, Ocular Micrométrico, Platina de Aguja y Platina Universal (Tipos de platinas, principios y metodología). Medida del 2V y 2E. Aplicación.	TP (5)
9	Microscopía óptica de reflexión	Principios de óptica en medios opacos: absorción (coeficiente e índice), relación con los índices de refracción, indicatrices de medios isótropos y anisótropos (uniáxicos y biáxicos). Reflexión de luz natural (Reflectividad) y reflexión con luz polarizada (Birreflexión). Rotaciones, anisotropía, figuras conoscópicas y dispersión. Síntesis de las propiedades ópticas de minerales opacos más	

		importantes. Aplicaciones en mineralogía.	
9	Microscopía Electrónica	Principios de microscopia: aumento vs resolución, poder resolutivo, ecuación de Abbe, apertura numérica, etc. Tipos de microscopía y rango de detección de cada uno. Microscopia Electrónica de Transmisión (TEM y HRTEM) y Microscopía Electrónica de Barrido (SEM). Otras técnicas de microscopía menos empleadas en mineralogía. Principios, información que suministran y empleo en mineralogía de cada una (ventajas y desventajas). Ejemplos.	
10	Difractometría	Principios de Difracción (repaso): diseños de difracción, celda recíproca y difracción sobre estructuras cristalinas (Ley de Laue y Ley de Bragg). Difracción de rayos X (XRD): Método de Polvo (Debye Scherrer y Difractogramas), Método de Monocristal Estacionario (Laue) y Método de Monocristal Rotatorio. Indexación de diagramas. Cálculo de los parámetros reticulares. Principios de Conceptos básicos sobre la Difracción de electrones (ED) y la Difracción de Neutrones (ND). Empleo, ventajas y desventajas de cada técnica.	
11	Espectrometría	Introducción . Los tipos de radiación del espectro electromagnético, conceptos básicos y características. Espectrómetros. Clasificación de los distintos tipos de espectrometría según el tipo de interacción o el principio que las gobierna.	
11	Espectrometría Óptica	Espectrometría Optica: ultravioleta-visible. Espectrometría de Llama (Espectrometría de Absorción Atómica (AAS) y Espectrometría de Emisión Atómica (AES)) y Espectrometría de Emisión Atómica por Plasma Inducido (ICP). Luminiscencia: catodoluminiscencia, fotoluniscencia, radioluminiscencia, luminiscencia química y triboluminiscencia). Principios, información que suministran y empleo en mineralogía de cada una (ventajas y desventajas). Ejemplos.	
11	Espectrometría Nuclear	Espectrometría Mossbauer (MS), Espectrometría de Masa (MS) y Espectrometría de masa por plasma inducido (ICP-MS). Principios, información que suministran y empleo en mineralogía de cada una (ventajas y desventajas). Ejemplos.	
12	Espectrometría de Infrarrojo y Raman	Espectrometría de infrarrojo (IR) y Espectrometría Raman (RS): Principios, información que suministran y empleo en mineralogía (ventajas y desventajas). Ejemplos.	
12	Espectrometría de Electrones	Espectrometría de Electrones Auger (AES) y Espectrometría de Fotoelectrones de Rayos X (XPS). Principios, información que suministran y empleo en mineralogía (ventajas y desventajas). Ejemplos.	
13	Espectrometría de Rayos X	Espectrometría de Absorción de Rayos-X (XAS), Espectrometría de Emisión de Rayos X (XES), Espectrometrías de Fluorescencia de Rayos-X (XFS – EDXS/EDAX/EDX y WDXS/WDX). Principios, información que suministran y empleo en mineralogía (ventajas y desventajas). Ejemplos.	
13	Técnicas Combinadas	Microsonda Electrónica (EPMA) y Emisión de Rayos-X inducidos por Partículas (PIXE). Principios, información que suministran y empleo en mineralogía (ventajas y desventajas). Ejemplos.	TP (7)
14	Determinación de las condiciones de formación de minerales	Microtermometría : Platina de calentamiento y enfriamiento para el análisis de inclusiones fluidas. Observación de los cambios de fase en las inclusiones fluidas de composiciones más frecuentes. Determinación y cálculo de diversos parámetros fisicoquímicos: temperatura mínima de formación, composición de las soluciones, densidad, porcentaje molar de cada fase, profundidad de soterramiento, presión de homogeinización, etc. Aplicación.	
14	Repaso		
15	Parcial		

BILIOGRAFÍA RECOMENDADA POR TEMA

Contexto Histórico del conocimiento en Mineralogía

- Sureda R.J., 2008. Historia de la Mineralogía. Instituto Superior de Correlación Geológica. Serie Correlación Geológica 23. Editor F.G. Aceñolaza. Pp189.
- Klein C. y Hurlbut C.S., 1996. Manual de Mineralogía basado en la obra de J.D. Dana. Cuarta edición. Edit. Reverté. 1: 368Pp.
- Oslacher J., 1946. Breve historia de la mineralogía. En Introducción a la Cristalografía. 7-19.

Evolución Mineral

- Hazen R.M. 2010. Evolution of Minerals. Scientific American. 58-65.
- Hazen R.M., Papineau D., Bleekern W., Downs R.T., Ferry J.M., McCoy T.J., Sverjensky D.A. y Yang H., 2008. Review Peper: Mineral Evolution. American Mineralogist. 93:1693-1720.
- Minik T.R. 2008. On the evolution of Minerals. Nature. 46(27):456-458.
- Rankama K. y Sahama Th.G., 1955. Geochemistry. 911 Pp.

Conceptos básicos de Mineralogía

- Klein C. y Hurlbut C.S. 1997. Manual de Mineralogía basado en la obra de Dana J.D., Cuarta edición. Pp 679.
- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Dennen W. 1960. Principles of Mineralogy. Pp 453.
- Klockmann, F. y Randohr, P. 1961. Tratado de Mineralogía.

Conceptos básicos de Cristalografía

- Klein C. v Hurlbut C.S. 1997. Manual de Mineralogía basado en la obra de Dana J.D., Cuarta edición. Pp 679.
- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Phillips F.C., 1978. Introducción a la cristalografía. 404 Pp.
- Rath R., 1972- Cristalografía. 207 Pp.

Técnicas para el estudio de minerales

- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. Pp: 325-349.
- Ware N.G., 2005. Mineral Analysis. In Analytical Methods. 107-118.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.

Propiedades Físicas - Concentración y Preparación de Muestras

- Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.
- Zussman J., 1967. Mineral Separation. Capítulo 1 en Physical Methods in Determinative Mineralogy. Pp 514.

Propiedades Mágnéticas y Técnicas de Estudio

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Dunlop D.J. y Zdemir O., Magnetizations in Rocks and Minerals. University of Toronto, Toronto, ON, Canada.
- http://earthref.org/MAGIC/books/Tauxe/2005/

Técnicas Térmicas

- Zussman J., 1967. Thermal Techniques. Capítulo 9 en Physical Methods in Determinative Mineralogy. Pp 514.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. Pp: 325-349.

Microscopía Óptica de Refracción - Dispersión

- Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.
- Phillips R.W., 1971. Mineral Optics: Principles and Techniques. Pp. 249. (Hemeroteca 549.903-P564m).

Microscopía Óptica de Refracción - Índices de Refracción

- Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.

Microscopía Óptica de Refracción - Compensadores

Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.

Microscopía Óptica de Refracción - Platina de Aguja

- Ray E.W., 1959. Universal stage accessory for direct determination of three principal indices of refraction. American Mineralogist. 44:1064-1067.
- Bloss F.D., 1981. The Spindle Stage: principles and practice. Cambridge University Press. New York. 340pp.
- Medenbach, O., 1985. A new microrefractometer spingle-stage and its aplications. Fortschritte der Mineralogie, 63:111-133.

Microscopía Óptica de Refracción - Platina Universal

- Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.
- Holness M.B., Cheadle M.J. y McKenzie D., 2005. On the Use of Changes in Dihedral Angle to Decode Latestage Textural Evolution in Cumulates. Journal of Petrology. 46(8):1565-1583.
- Phillips R.W., 1971. Mineral Optics: Principles and Techniques. Pp. 249.
- Winchell A.N., 1931. Elements of Optical Mineralogy. Tomo 1: 248Pp.

Microscopía Óptica de Reflexión

- Bonorino G.F., 1976. Mineralogía Óptica. Pp 343.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.
- López Soler A. y Bosch Figueroa J.M., 1971. Medida de la reflectancia de una superficie pulida: estudio microscópico de minerales opacos. Acta Geológica Hispánica, 6(3):3-6.

Microscopía Electrónica

- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Amelinckx S., 1995. High resolution Electron Microscopic techniques in the study of defects. Chapter 6, in Advanced Mineralogy, vol:1, Marfunin (Ed.) Pp 550.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. 325-349.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.

Difractometría

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Bedlivy D y Arcidiacono E. Introducción a la determinación de minerales por difracción de rayos X. Asociación Argentina de Mineralogía, Petrología y Sedimentología. Serie Didáctica N2. Pp. 49.
- Massa W., 1996. Crystal Structure Determination. Pp206.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.

Espectrometría (Introducción-conceptos teóricos)

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Klein C. y Hurlbut C.S., 1996. Manual de Mineralogía basado en la obra de J.D. Dana. Cuarta edición. Edit. Reverté. 1: 368Pp.

Espectrometría Optica

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Klein C. y Hurlbut C.S., 1996. Manual de Mineralogía basado en la obra de J.D. Dana. Cuarta edición. Edit. Reverté. 1: 368Pp.

Espectrometría Nuclear

• Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. 325-349.

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Hawthorne F.C., 1995. Nuclear Gamma Resonante (Mossbauer) Spectrometry. En Marfunin A.S., 1995.
 Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.

Espectrometría de Infrarrojo

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. Pp: 325-349.
- Farmer V., 1974. The infrarred spectra of minerals. Mineralogical Society of London.

Espectrometría Raman

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. Pp: 325-349.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Dionisio B., 1988. Introducción a la Espectroscopia Raman. Serie Química, Monografía 31.

Espectrometría de Electrones

• Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. 325-349.

Espectrometría de Rayos X

- Putnis A., 1992. Introduction to Mineral Sciences. Cambridge University Press. Pp. 457.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.
- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.
- Klein C. y Hurlbut C.S., 1996. Manual de Mineralogía basado en la obra de J.D. Dana. Cuarta edición. Edit. Reverté. 1: 368Pp.

Técnicas Combinadas

- Zussman J., 1967. Physical Methods in Determinative Mineralogy. Pp 514.
- Pérez Rodríguez J.L., 2003. Caracterización de minerales y nuevas técnicas. En Mineralogía Aplicada, Editor: Galán Huertos Emilio. Pp: 325-349.
- Marfunin A.S., 1995. Systematics of the Methods of investigation of minerals: logic of development. Chapter 1, in Advanced Mineralogy, vol:2, Marfunin (Ed.) Pp 441.

Microtermometría

- Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, Mineralogical Society of America, 12: 664p.
- Roedder, E. y Bodnar, R. J., 1980. Geologic Preassure Determinations from fluid inclusion studies. Ann. Rev. Earth and Planetary Science Letters, 8:263-301.